Tonnes of used face masks to be turned into energy

Tonnes of used face masks to be turned into energy
# 27 January 2022 10:16 (UTC +04:00)

The authors of the research claim that their technology could turn waste that is difficult to recycle into raw materials, according to a study published in the Journal of Energy Storage, APA reports citing Sputnik.

Researchers say that during the coronavirus pandemic, people on the planet started using more than 130 billion masks every month, which turn yielded hundreds of tonnes of polymer waste. When burned it emits toxic gases, so the task of recycling this waste is particularly urgent.

Scientists at NUST MISIS, together with their foreign colleagues, have developed a new technology for producing cost-effective batteries from used masks, where waste drug blister packs are also used as a shell. Aside from the recycled waste, all that needs to be procured is graphene.

The new technology enables the production of thin, flexible batteries that are also disposable, due to their low cost. They are superior in several ways to heavier, metal-coated conventional batteries, which are more expensive to manufacture. The new batteries can be used in household appliances from clocks to lamps.

“To create a battery of the supercapacitor type, the following algorithm is used: first the masks are disinfected with ultrasound, then dipped in ‘ink’ made of graphene, which saturates the mask. Then the material is pressed under pressure and heated to 140°C (conventional supercapacitor batteries require very high temperatures for pyrolysis-carbonization, up to 1000-1300°C, while the new technology reduces energy consumption by a factor of 10). A separator (also made of mask material) with insulating properties is then placed between the two electrodes made of the new material. It is saturated with a special electrolyte, and then a protective shell is created from the material of medical blister packs (such as paracetamol)”, Professor Anvar Zakhidov, scientific leader of the infrastructure project “High-Performance, Flexible, Photovoltaic Devices Based in Hybrid Perovskites” at NUST MISiS, said.

1 2 3 4 5 İDMAN XƏBƏR
#
#

THE OPERATION IS BEING PERFORMED